Search results for "Central charge"
showing 8 items of 8 documents
Field Parametrization Dependence in Asymptotically Safe Quantum Gravity
2015
Motivated by conformal field theory studies we investigate Quantum Einstein Gravity with a new field parametrization where the dynamical metric is basically given by the exponential of a matrix-valued fluctuating field, $g_{\mu\nu}=\bar{g}_{\mu\rho}(e^h)^\rho_{\nu}$. In this way, we aim to reproduce the critical value of the central charge when considering $2+\epsilon$ dimensional spacetimes. With regard to the Asymptotic Safety program, we take special care of possible fixed points and new structures of the corresponding RG flow in $d=4$ for both single- and bi-metric truncations. Finally, we discuss the issue of restoring background independence in the bi-metric setting.
Critical behaviour of coupled spin chains
1991
The authors investigate, using numerical computation of the eigenvalues of short chains, the critical behaviour of two composite spin models, which interpolate smoothly between isotropic Heisenberg chains with different values of S. For the first model which interpolates between S=1/2 and S=3/2 they find that the model is critical over the whole range and the values of the central charge and critical exponents (scaling dimensions) appear to be constant in the thermodynamic limit. In the second model, which interpolates between S=1/2 and S=1 they find that, except at S=1/2, the central charge is effectively zero, implying a non-critical behaviour.
On the underlying gauge group structure of D=11 supergravity
2004
The underlying gauge group structure of D=11 supergravity is revisited (see paper for detailed abstract).
Relativistic wave equations from supergroup quantization
1983
A formalism of geometric quantization recently introduced which is based on the consideration of Lie groups which are central extensions by U(1) is applied to the relativistic case by using the N-2 super Poincare group with a central charge.
The unitary conformal field theory behind 2D Asymptotic Safety
2015
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety progra…
Non-extremal black holes of N = 2, d = 4 supergravity
2011
We propose a generic recipe for deforming extremal black holes into non-extremal black holes and we use it to find and study the non-extremal black-hole solutions of several N=2,d=4 supergravity models (SL(2,R)/U(1), CPn and STU with four charges). In all the cases considered, the non-extremal family of solutions smoothly interpolates between all the different extremal limits, supersymmetric and not supersymmetric. This fact can be used to find explicitly extremal non-supersymmetric solutions in the cases in which the attractor mechanism does not completely fix the values of the scalars on the event horizon and they still depend on the boundary conditions at spatial infinity. We compare (su…
Symmetry-protected intermediate trivial phases in quantum spin chains
2015
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum cha…
Leaving the BPS bound: Tunneling of classically saturated solitons
2000
We discuss quantum tunneling between classically BPS saturated solitons in two-dimensional theories with N=2 supersymmetry and a compact space dimension. Genuine BPS states form shortened multiplets of dimension two. In the models we consider there are two degenerate shortened multiplets at the classical level, but there is no obstruction to pairing up through quantum tunneling. The tunneling amplitude in the imaginary time is described by instantons. We find that the instanton is nothing but the 1/4 BPS saturated ``wall junction,'' considered previously in the literature in other contexts. Two central charges of the superalgebra allow us to calculate the instanton action without finding th…